Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available December 1, 2026
-
National data have shown the need to expand and diversify the talent pool of the quantum technologies workforce. This article describes a newly designed 25-h summer quantum information science and technology (QIST) program for high school students in grades 10–12; the goal is to advance physical science literacy and diversify the STEM pipeline through novel quantum science and quantum computing access and learning. This partnership between Stony Brook University and the New York Hall of Science was designed by quantum physicists and physics education researchers. This manuscript describes the rationale and progression of quantum ideas and computing skills introduced in the outreach program. The program design scaffolded physics, mathematics, and computer science concepts to engage high school students in the excitement of quantum information science and technology fields. The disciplinary content included the limitations of classical computing, classical and quantum physics principles (diffraction, polarization, wave-particle duality), the Mach–Zehnder interferometer, superposition, quantum thought experiments (Schrödinger's cat and Wigner's friend), entanglement and Bell's inequality, quantum key distribution, and basic quantum computing skills. Students also spent time visiting laboratories and museum exhibits and learning about academic progressions and career pathways in quantum technologies. This university-based science outreach model may be replicated by other quantum educators and adapted for learning in formal contexts.more » « less
-
[This paper is part of the Focused Collection in Investigating and Improving Quantum Education through Research.] There is a growing need in the United States for a workforce trained in quantum information science and technology (QIST), a disciplinary topic that is rarely addressed in precollege science, mathematics, and computer science curricula. University quantum physics and physics education researchers designed and initiated a 4-week, 12-h QIST professional development workshop for preservice and in-service secondary school science, mathematics, and computer science educators. A STEM integration framework guided the workshop structure, which incorporated a situated cognition model for learning quantum concepts and computing, identifying recent advances in quantum technologies, planning curricula, and differentiating among QIST subfields including quantum communication, quantum computation, quantum simulation, and quantum metrology and sensing. The pre-/post-research design employed a newly developed teacher attitude survey, Exploratory factor analysis identified three latent constructs in teachers’ self-efficacy, including (i) knowledge about QIST academic pathways and careers; (ii) QIST pedagogical fluency and STEM integration; and (iii) facilitating QIST learning. Parametric comparisons of means indicated that teacher participants showed significant gains overall and in all latent constructs with medium to large effect sizes ( ). This professional learning model shows promise in strengthening teachers’ self-confidence in pedagogical content knowledge of quantum ideas so they may facilitate student engagement in quantum information science, a field that involves conceptual change and is often considered abstract, counterintuitive, inaccessible, and suitable only for the academically elite. Implications for policy and practice are discussed. Published by the American Physical Society2024more » « lessFree, publicly-accessible full text available December 1, 2025
-
Waveguide quantum electrodynamics constitutes a modern paradigm for the interaction of light and matter, in which strong coupling, bath structure, and propagation delays can break the radiative conditions that quantum emitters typically encounter in free space. These characteristics intertwine the excitations of quantum emitters and guided radiation modes to form complex multiphoton dynamics. So far, combining the collective decay of the emitters with the non-Markovian effects induced by the modes has escaped a full solution and the detailed physics behind these systems remains unknown. Here we analyze such a collective non-Markovian decay in a minimal system of two excited emitters coupled to a one-dimensional single-band waveguide. We develop an exact solution for this system in terms of elementary functions that unveils hidden symmetries and predicts new forms of spontaneous decay. The collective non-Markovian dynamics, which are strongly dependent on the vacuum coupling and the detuning from the center of the band, show exotic features that can be characterized with a simple and readily available criterion. Our analytic methods shed light on the complexity of collective light-matter interactions and open up a pathway for understanding multiparticle open quantum systems. Published by the American Physical Society2024more » « less
-
[This paper is part of the Focused Collection in Investigating and Improving Quantum Education through Research.] With the current growth in quantum information science and technology (QIST), there is an increasing need to prepare precollege students for postsecondary QIST study and careers. This mixed methods, explanatory sequential research focused on students’ affective outcomes from a one-week, 25-h summer program for U.S. high school students in grades 10–12. The workshop structure was based upon psychosocial theories of self-determination and planned behavior, where QIST aspirations may be facilitated and viewed as achievable choices if students acquire disciplinary knowledge, self-efficacy, normative expectancy of their capacity in the field, and awareness of vocational roles. The program featured lectures, demonstrations, and hands-on experiences in classical and quantum physics and quantum computing. Students’ attitudes toward QIST ( )—including self-efficacy, self-concept, relevance, career aspirations, and perceptions of quantitative fluency—showed improvement with a medium effect size, even though treatment students entered the program with more positive QIST attitudes when compared with a control group of high school physics students ( ). Postprogram interviews with participants identified several explanatory themes: (i) Students tended to comprehend classical and quantum topics taught through multiple representations, regardless of whether they had taken physics previously; (ii) students experienced some challenges with mathematics and science concepts that support quantum understanding, yet they revealed a willingness to learn new concepts outside of their comfort zone; (iii) students expressed motivation for pursuing science, technology, engineering, and mathematics and/or quantum-related careers in the future, as well as increased QIST self-concept, largely through understanding the relevance of QIST in solving technological problems; and (iv) students reported increased self-efficacy in understanding QIST topics and performing related tasks. This informal summer program showed promise in promoting positive student attitudes toward QIST, a critical emerging field in advancing technological solutions for global challenges. Published by the American Physical Society2024more » « less
An official website of the United States government
